
Final Project - Final Report

2020-2021

HIERARCHICAL TABLE ENSEMBLE (HTE)
Deep Learning Algorithm

Omri Dahan & Shira Shushan

Advisor - Dr. Aharon Bar-Hillel

Co-advisor - Ph.D student Guy Farjon

Department of Industrial Engineering and Management

Faculty of Engineering

Ben-Gurion University Of The Negev, Israel

June 2021

1

Hierarchical Table Ensemble (HTE) Final Report

1 Acknowledgement

We would like to express our sincere gratitude to Dr.Aharon Bar Hilel who grant us the

opportunity to be a part of the HTE project, guide us on the Learning, Representation, Vision

course and for general Deep-Learning guidance.

We would also like to express our special appreciation to Ph.d student Guy Farjon for weeks

and months of support, patience and dedication in effort to help us achieve success.

We had the golden opportunity to be a part of a project which have the potential to impact the

global approach for Deep Learning. HTE is an innovative project which we hope to see evolve

and become a new tool for academic and business problems. We are grateful to take part of it.

Page 2 of 28

Hierarchical Table Ensemble (HTE) Final Report

Contents

1 Acknowledgement 2

List of Tables 4

List of Figures 5

2 Abstract 7

3 Introduction 8

4 Related Work 9

4.1 Deep Learning and Convolutional Neural Networks 9

4.2 Convolutional Tables Ensemble (CTE) and Deep CTE 10

4.3 Deep Random Forest . 12

5 Hierarchical Table Ensemble 14

5.1 From the CT transformation to working with vectors 15

5.2 Bit functions . 15

6 Experimenting With Synthetic Data 15

6.1 Experiments . 16

6.2 Initial Results . 16

7 Experimenting With Real Data 18

7.1 LETTER Data Set . 18

7.2 ADULT Data Set . 20

7.3 WINE Data Set . 24

7.4 YEAST Data Set . 24

8 Final Results 26

9 Summary and Conclusions 26

10 Future Work 26

References 28

Page 3 of 28

Hierarchical Table Ensemble (HTE) Final Report

List of Tables

1 Table to test captions and labels . 18

2 LETTER data set attributes information . 18

3 LETTER data set first five rows . 18

4 HTE results LETTER with ResFern & Batch Norm 20

5 ADULT data set attributes information . 20

6 ADULT data set first five rows . 20

7 HTE Result ADULT Regular . 24

8 HTE Result ADULT ResFern . 24

9 HTE Result ADULT ResFern and Batch Norm 24

10 HTE Result WINE . 24

11 ADULT data set attributes information . 25

12 HTE Result YEAST data set . 26

13 Algorithms Results On Data sets . 26

Page 4 of 28

Hierarchical Table Ensemble (HTE) Final Report

List of Figures

1 Ferns description: similar to decision trees but with a significant difference - in

decision trees the query in each node will be chosen by some splitting criteria,

and the same query won’t appear in more than a single node. In a fern, the

queries at each specific level i are known in advanced and are not dependent on

the results of level j, where i > j. 8

2 CNN pooling: Progressively reduces the spatial size of representation to reduce

amount of parameters and computation in network and also controls overfitting.

If no pooling, then the output consists of same resolution as input. 10

3 CNN full architecture . 10

4 CTE: enabling gradient based learning with a smooth linear sigmoid. 11

5 Random forest: each of the examples of the input X goes through a series of

randomly chosen queries, until they reach the tree’s leafs. To get the final output

Y , a grouping metric is applied. 13

6 Cascade forest structure example: On each level of the cascade there is two

random forests (black) and two completely-random tree forests (blue). Here,

there are three classes to predict. Therefore, each forest will output a 3D class

vector, which is then used as an input for the next level. 13

7 Forest class vector generation example: Different marks in leaf nodes means

different classes. 13

8 Feature re-representation using sliding window scanning example: 3 calsses, 400-

dim raw features and 100-dim sliding window. Note - By using multiple sizes of

sliding windows, differently grained feature vectors will be generated. 14

9 Overall gcForest procedure: 3 classes to predict, 400-dim raw features, and 3

sizes of sliding windows are used. 14

10 Learning Rate for gradient descent: A hyperparameter that used to train the

network. Too low, training will make very tiny updates to the weights which

cause slow learning progress. However, if set too high, undesirable divergent

behavior may occur in the loss function. 17

11 Experiment A 2-Dim distribution, separation factor is 5 17

12 Experiment A 2-Dim distribution, separation factor is 2 17

13 Experiment C 2-Dim distribution, separation factor is 2 17

14 Experiment C 2-Dim distribution, separation factor is 2 17

15 Accuracy by epoch number for all experiments. 17

16 Demonstration of class(letters) distribution . 18

17 Illustrate the Black-and-white rectangular pixel displays some of the 26 capital

letters in the English alphabet . 19

18 Heat map showing relationship between each letter and each attribute 19

19 Bar plot showing relationship between each letter and ’xedge’ feature 19

20 Age distribution . 21

21 Age-Income relationship box plot . 21

22 Education-Income relationship . 22

23 Race-Income relationship plot . 23

24 WINE attributes histograms to explore and visualize the data. 24

Page 5 of 28

Hierarchical Table Ensemble (HTE) Final Report

25 WINE correlation matrix to visualize relationship between the different attributes. 25

26 WINE Relationship between Phenols and Flavanoids: We can conclude that is

some dependency between the two attributes. 25

Page 6 of 28

Hierarchical Table Ensemble (HTE) Final Report

2 Abstract

Deep learning has emerged as an important approach to solve both academic and real-world

problems. In this approach, multiple layers (neural layers or others) are used, hierarchically, to

progressively extract high-level features from the input data. One common deep learning model

is the deep Artificial Neural Network (ANN). Contains millions of ’neurons’ which usually re-

quires the need of GPUs or other specialized hardware. ANNs had empirical success in the last

decade and currently it is one of a few alternative existing in practice. We claim that there are

other alternatives for deep learning, resulting with similar results but with faster performance.

Our proposed alternative is the Hierarchical Table Ensemble (HTE) algorithm. This algo-

rithm uses ferns as the main computational component. Ferns are like decision trees, with a

small but significant difference - the queries at each level ‘i’ are known in advanced and are

not dependent on the results of level ‘j’. Each query is a simple binary question which is used

for quicker calculations and optimization. These ferns are word-calculators and their output

is a K-bit binary codeword which is used as an index into a ’voting table’ which retrieves the

corresponding output representation. By applying M such ferns, and summing their results,

we get an ensemble of simple voting tables. HTE will be a stacked model of L such layers,

connected one over the other to extract high level features for the input.

Other deep classifiers exist, such as “gcForest”, which is a deep random forest. HTE al-

gorithm aims to compete with such architectures, enabling deep learning framework but as a

computationally cheaper approach. As a first, we conducted experiments on synthetic data

to tune the classifier’s hyper-parameters. Seconds, after we were able to solve synthetic prob-

lems, we moves to real-world data. We compared results on publicly available datasets such as

ADULT, LETTER, IMDB, WINE etc. with the “gcForest” algorithm. Currently, “gcForest”

shows slightly better results at this point. For example, on the ADULT dataset which aims

to figure out if a person is likely to earn 50K$ or more a year, only by knowing that person’s

demographic information, the “gcForest” accuracy was 86% while HTE showed 83%.

Finally, HTE is a new deep algorithm which is still being researched. HTE suggests a

framework that enables accelerated CPU inference for low-compute domains, with mild costs

of accuracy descending and memory consumption. In our work we present how HTE works on

synthetic examples and compare the algorithm results on various datasets with other known

deep learning algorithms.

Key Words: Bit Functions, Ferns, Machine Learning, Deep Learning, Hierarchical Table

Ensemble

Page 7 of 28

Hierarchical Table Ensemble (HTE) Final Report

3 Introduction

In the last few years, deep learning has emerged as an important approach to solve both aca-

demic and real-world problems. In this approach, multiple layers (neural layers or others) are

used, hierarchically, to progressively extract high-level features from the input data. One com-

mon deep learning model is the deep Artificial Neural Network (ANN), which is a graph of

dot-product computing elements. It is customary to think there is an essential tight coupling

between these two concepts, probably because ANNs had empirical success in the last decade

and currently it is one of a few alternative existing in practice. We claim that there are other

alternatives for deep learning, resulting with similar results but with faster performance.

Deep ANN models contain millions of ’neurons’ which usually requires the need of GPUs

or other specialized hardware. In effort to make deep learning computationally affordable for

common devices like drones, smartphones, security cameras, IOT devices and others CPU-

based devices, a simple alternative could be Hierarchical Table Ensemble (HTE). For a CPU

with ideally unbounded memory access capabilities, the fastest classifier would be based on a

single huge table (hypothetically). By applying a sequence of simple binary queries to the in-

put and build an index from the resulting bits, the answer will be retrieved from the table entry.

An alternative realistic approach will be to use transformation called ’ferns’ (see fig. 1).

Ferns are similar to decision trees, with a small but significant difference - the queries at each

specific level i are known in advanced and are not dependent on the results of level j. Each

query is actually a simple binary question which is used for quicker calculations and optimiza-

tion. These ferns are word-calculators ant their output is a K-bit binary codeword which is

used an index into a ’voting table’ which retrieves the corresponding output representation. By

applying M such ferns, and summing their results, we get an ensemble of simple voting tables.

HTE will be a stacked model of L such layers, connected one over the other to extract high

level features for the input.

Figure 1: Ferns description: similar to decision trees but with a significant difference - in decision trees the query in
each node will be chosen by some splitting criteria, and the same query won’t appear in more than a single node. In a
fern, the queries at each specific level i are known in advanced and are not dependent on the results of level j, where

i > j.

In summary, we will try to present an alternative to neuron-based networks called HTE

for structured data. From an applicative point of view, HTE suggests a framework enabling

accelerated CPU inference for low-compute domains, with mild costs of accuracy descending

and memory consumption. In this report we will present how HTE works on synthetic examples,

and how HTE perform on various datasets compare with other known deep learning algorithms.

Finally, we will conclude the results of our tests in effort to support that HTE can be a good

alternative.

Page 8 of 28

Hierarchical Table Ensemble (HTE) Final Report

4 Related Work

4.1 Deep Learning and Convolutional Neural Networks

As stated, deep learning is a method to extract high-level features from the input data. This

approach was driven from the data processing mechanisms in the human brain for usage in

identifying objects, translating languages, recognizing speech, and making decisions. Currently,

neural networks are the most popular deep learning models due to several factors. First, as the

name implies, scientists and engineers were inspired by the biological neural structure of the

human brain. However, current simple hardware, such as CPUs, cannot operate parallelly like

biological brain neuron structures. Instead, CPUs offers the ability to accesses great memory

structures efficiently. Second, there are some theoretical factors in favor of neural networks

which are known, such as the universal approximation - neural networks has the capability to

estimate each continuous function on a dense domain using only two hidden layers. Third,

and probably the main factor, is their observed success. Nonetheless, there are claims that

these factors are incontestable and that an alternative of voting tables might be better in low

compute fields [1].

Deep ANNs models were planned and built by an American psychologist, Frank Rosen-

blatt, in 1958 [2], to let the system learn rules, recognize patterns and make decisions in a

human-like fashion. It does so by a weight modification rule and their purpose is to solve a

given task, which is specified by feeding the network with input-output examples. Deep ANNs

are made of several ANN layers - the input layer X, the output layer Y , and several interme-

diate layers {li}Li=1. The intermediate layers can consist different number of neurons, that can

interact with one another. The deep ANNs can be thought of as a directed graph in which

connections within a layer or from an higher layer to a lower layer are prohibited. The input

vector sets the input unit’s state. Then the state of every neuron in each layer is determined

by applying a non-linear function on the output of the previous layer.

Convolutional Neural Network (CNN) is an advanced ANN model. It was mainly in-

tended to learn spatial hierarchies of attributes over backward expansion by means of numerous

building blocks, like convolution layers, activation functions, pooling layers, ANN layers, and

more. These networks can assist in originating related image data in form of minor patches or

image units. The neurons in the convolution layers are responsible for the cluster of neurons in

the earlier layer. The working process of CNNs comprises of four main layers

1. Convolutional layer - this layer is the core building block of CNNs and is designed to

identify the features of an image. Each such layer includes several filters which are the

learnable parameters of the layer. These filters are usually small, and are multiplied by

the input data in an convolutional manner.

2. Activation function - this function introduce the non-linear property of the decision func-

tion and of the overall network. One of the most common activation function is the ReLU

which is a element-wise activation function thresholding at zero - ReLU(x) = max(0, x).

3. Pooling layer - this layer was designed to reduce the number of parameters to learn by

down-sampling the input representation. One common layer is the max-pooling layer, in

which the input is partitioned into sub-regions, and for each of them, only the maximum

value is kept.

Page 9 of 28

Hierarchical Table Ensemble (HTE) Final Report

4. Fully-connected layer - these are standard ANN layers which can be incorporated, usually

at the end of the CNN model.

Figure 2: CNN pooling: Progressively reduces the spatial size of representation to reduce amount of parameters and
computation in network and also controls overfitting. If no pooling, then the output consists of same resolution as

input.

As of today, CNNs are popular and are used in an abundance of applications. However,

as stated in the introduction, CNNs usually requires special hardware (like GPUs) even at

inference time. There are several approaches to accelerate CNNs, for example, recently [3] offers

the ability to optimize inference CNN models on CPUs. But still, as most of the acceleration

approaches, the convolutional layers, which is the most computational-expensive component in

CNNs, are kept. Since this hardware is expansive and not adequate for each end-device (such as

smart-phones or drones) optimizing the CNN inference models on standard CPUs will present

an important gain to a large number of users.

Figure 3: CNN full architecture

4.2 Convolutional Tables Ensemble (CTE) and Deep CTE

The CTE algorithm was created for image classification as a computational cheaper alternative

for CNNs. The CT transformation is build as a pair of functions (W,V) where W is a word

calculator and V is a voting table. A single neuron of the word calculator W computers the

answer of K simple binary questions over the input, creating a K-length binary word. This

word will be used as an index to the voting table V to extract the required output. The

wildest classifier will include the encoding of all pixels in the image into a single directory, and

then by means of this directory to access a table patching the tags of all conceivable images.

Obviously, it is not realistic because of the exponential requires of memory and size of the

training set. Hence, instead of describing the entire image using a single transformation, the

image is represented as a dense set of patches where individually patch is described by means of

the same parameters. Moreover, instead of using a single transformation with a large number

of K-binary questions, leading to a huge table, an ensemble of transformations are used, each

Page 10 of 28

Hierarchical Table Ensemble (HTE) Final Report

with a smaller value of K. Votes of all tables are then summed to give the final output of the

transformation. The deep CTE is a model build from several CTE layers, stacked hierarchically

to enable the model the ability to learn deep representations.

CTE Drill: CT transformation applies the operation defined below at all positions of the

input tensor T in ∈ RHi×Wi×Di in a convolutional manner to form the output tensor T out ∈

RHo×Wo×Do . The transformation start with the word calculator function W which applied

to a single patch and returning a K-bit codeword. W : Rl×l×Di → {0, 1}K , where l is the

patch size. The codeword is computed by K simple bit functions {wk}Kk=1, each computing

a single bit of the codeword. When fixed, the computed codeword denoted by W (P ; Θ) =

(w1(P ; Θ1), ..., (wK(P ; ΘK). A simple comparison of the difference between two values in the

patch and a threshold are used as bit functions:

wk(P ; Θk) = T in(px + ∆xk1 , py + ∆yk1 , c
k)− T in(px + ∆xk2 , py + ∆yk2 , c

k)− thk (1)

The output is a scalar, hence an Heaviside function Q(x) is applied to produce the needed

output: W k(P ; Θk) = Q(wk(P ; Θk) ∈ {0, 1}. Where Θk = [∆xk1 ,∆y
k
1 ,∆x

k
2 ,∆y

k
2 , th

k] are the

learned parameters. The codeword computed by the word calculator is used as an index into a

voting table V ∈ M2K×Do
to get the Do-dimensional output V (W (P ; Θ), :) for location P . A

CTE layer consists of an ensemble of M ferns {Wm, Vm}Mm=1. Ferns outputs in each position

are summed to get the layer’s output:

T out[px, py, :] =

M∑
m=1

Vm[Wm((px, py)), :)] (2)

The Deep CTE is a stacked model of L CTE layers, connected one over the other. In order

to enable gradient based learning, CTE uses a smooth linear sigmoid to replace Q(x), which is

not continuous in x = 0 and its gradient equals to zero everywhere else:

q(x; t) =

1 x > t

(t+ x)/(2t) −t < x < t

0 x < −t

(3)

Figure 4: CTE: enabling gradient based learning with a smooth linear sigmoid.

q(x; t) is linear in the section [−t, t] and hence has a gradient in this section. q(wk(P ; Θ); t)

which is similar to a ’soft’ bit, with q(wk) estimating the probability of the bit to be 1 and

q(−wk) the probability to be 0. We now extend it to a soft word calculator ~W s : Rl×l×Di →

R2K

, assigning each possible word a probability-like value. For each codeword b ∈ {0, ..., 2K−1},

the activity level is defined by

~W s(P ; Θ)[b] =

K∏
k=1

q(s(b, k) · wk(P ; Θk); t) (4)

Page 11 of 28

Hierarchical Table Ensemble (HTE) Final Report

Where s(b, k) =∆ (−1)(1+u(b,k)) is the sign of the kth bit, with u(b, k) denotes the kth bit of

the codeword b in the standard binary expansion. s(b, k) is 1 if bit k = 1, and −1 if bit k = 0.

The probability-like activity level of a word b is defined as the product of the ’probability’ of

its single bits. The parameter t of the linear sigmoid acts as a threshold. When t is large, most

of the bit functions are ’ambiguous’. CTE uses an annealing schedule mechanism, such that t

is initiated as t � 0, set to allow some bit functions values to be in the ’soft zone’ [−t; t]. t is

gradually lowered to achieve a sharp classifier towards the end of the training phase.

4.3 Deep Random Forest

As of today, the two terms deep learning and deep ANNs are used as synonymous. Indeed, deep

ANNs has shown great success in various tasks over the last decade and been used in a broad

spectrum of application. But is deep ANNs are the only form of deep learning? It is widely

recognized that the ’deep’ component, which enables representation learning, is an important

part of deep ANNs’ success. Deep ANNs are models built based on several hierarchical layers,

each containing differentiable non-linear units, that can be trained by backpropagation. Hence,

deep ANNs are a single model using the concept of deep learning. Recently, [4] suggested an

alternative deep learning model based on a cascade of random forest models.

Random decision forest, or random forest, is an accessible, easy to use and well known

machine learning model, thanks to their easy expressibility and various implementations, as

well as their empirical success and cheap computational cost. The random forest represent an

ensemble of decision trees, each of which is grown separately, using a specific optimization metric

for splitting the examples in each of the nodes (such as gini, information gain, or others [5]).

These models are well suited for classification, regression and other machine learning tasks.

Random forest contains a large number of decision trees (can reach to thousands of trees),

each performing the same task. The inputs to the random forest is a matrix X ∈ Rn×d and

the output is a class Y ∈ [1, .., C] for classification tasks, where n is the number of examples,

d is the number of features and C is the number of classes (for other tasks Y will be changed

accordingly). The first node in the tree will split X to two subsets according to a given metric.

Than, each of the subsets will be split according to different queries. Meaning that there are

different query in each node. The input examples will traverse in a different path, reaching

to different leafs, which are located at the end of the tree. Each leaf represents a class (in

classification tasks) to which the examples that reached it should be classified to. At training

time, the class to which each leaf is pointing to, will be decided by the examples that reached

that leaf. There are several approaches on how to grow the trees (i.e. how to tune the model’s

hyperparameters, such as how many splits will each tree apply). For example - for regular

random forest, each tree could apply
√
d splits, where the criteria for splitting is predefined and

use different features in each tree (drawn randomly). Another example is the complete random

forest, in which a random set of features are drawn, and the splitting at each node is done using

a randomized chosen feature. At the end, the output of the trees are grouped together (using

a majority vote, for example) and the final output is determined.

The authors in [4] exploit the benefits of random forests to create a deep random forest -

a cascade of random forests that enables representation learning as shown in Figure 6. Each

level is an ensemble of decision tree forests(ensemble of ensembles). There are different types

of forests included to encourage the diversity. One of them is completely-random tree forest

that contains completely random trees, generated by randomly selecting a feature for split at

Page 12 of 28

Hierarchical Table Ensemble (HTE) Final Report

Figure 5: Random forest: each of the examples of the input X goes through a series of randomly chosen queries, until
they reach the tree’s leafs. To get the final output Y , a grouping metric is applied.

each node of the tree. The other is random forest which contains trees randomly selecting
√
d

number of features as candidate.

Figure 6: Cascade forest structure example: On each level of the cascade there is two random forests (black) and two
completely-random tree forests (blue). Here, there are three classes to predict. Therefore, each forest will output a

3D class vector, which is then used as an input for the next level.

Each forest will produce an estimate of class distribution, by counting the percentage of

different classes of training examples at the leaf node where the concerned instance falls, and

then averaging across all trees in the same forest, as illustrated in Figure 7, where red color

highlights paths along which the instance traverses to leaf nodes.

Figure 7: Forest class vector generation example: Different marks in leaf nodes means different classes.

To minimize overfitting risk, class vector produced by each forest is generated by k − fold

cross validation. In detail,each instance will be used as training data for (k−1) times, resulting

in (k − 1) class vectors, which are then averaged to produce the final class vector. After

expanding a new level, the performance of the whole cascade will be estimated on validation

set.

Multi-grained scanning is applied on cascade forest, meaning sliding windows are used to

scan the raw features, see Figure 8. The instances extracted from the same size of windows

will be used to train a completely-random tree forest and a random forest, and then the class

Page 13 of 28

Hierarchical Table Ensemble (HTE) Final Report

vectors are generated and concatenated as transformed features.

Figure 8: Feature re-representation using sliding window scanning example: 3 calsses, 400-dim raw features and
100-dim sliding window. Note - By using multiple sizes of sliding windows, differently grained feature vectors will be

generated.

Final model is actually a cascade of cascade forests, where each level in the cascade consists

of multiple grades (of cascade forests), each corresponding to a grain of scanning, as shown

in Figure 9. Note that for difficult tasks, users can try more grains if computational resource

allows.

Test instance will go through the multi-grained scanning procedure to get its corresponding

transformed feature representation, and then go through the cascade till the last level. The

final prediction will be obtained by aggregating the four 3-dimensional class vectors at the last

level, and taking the class with the maximum aggregated value, as Figure 9 shows.

Figure 9: Overall gcForest procedure: 3 classes to predict, 400-dim raw features, and 3 sizes of sliding windows are
used.

5 Hierarchical Table Ensemble

The CTE algorithm was design to solve Computer Vision (CV) problems. The input in such

problems are images which are spatially arrange. Meaning that near-by pixels are correlated

with one-another. Hence the CTE in it’s current version, is not well-suited for structured data

problems, in which features are not necessarily related. In such cases, the bit functions used in

the CTE (see Equation 1) should be changed to get a better features extractor. In this section

we will explain how to move from the current CTE algorithm to what we refer as Hierarchical

Table Ensemble (HTE).

Page 14 of 28

Hierarchical Table Ensemble (HTE) Final Report

5.1 From the CT transformation to working with vectors

A the basic neuron of the HTE model is accepting a representation vector T in ∈ RDin and

creating a output representation vector T out ∈ RDout . Similarly to the CT transformation 4.2,

the transformation is a pair of a word calculator (W) and a voting table (V). A word calculator

W is a feature extractor applied on the input and returning a K-bit index i.e. a function

B : RDin → {0, 1}K . The code-word is computed by K simple bit functions {wk}Kk=1, each

computing a single bit of the code-word.

The computed code-word is denoted by

W (x; Θ) = (w1(x,Θ1), ..., wK(x,ΘK)) (5)

Since the input is a tabular data, each feature (cell) is different. Instead of choosing a single cell

and compare it to a threshold, the bit functions will be a linear combination of all the features:

wk(x; Θk) = Ukx− thk (6)

Where U ∈ RDin is a weights vector. This way, the bit function can account for all the features

in the input. Notice that the output of such bit function is a scalar, hence an Heaviside function

Q(x) (thresholding at 0) is applied to produce the needed output: W k(x,Θk) = Q(Ukx−thk) ∈

{0, 1}. The code-word computed by W is used as an index into a voting table V ∈ M2K×Dout

to get the Dout-dimensional output V (W (x,Θ), :).

A single layer in the HTE model consists of an ensemble of M ferns {Wm, Vm}Mm=1. Ferns

outputs are summed to get the layers’ output:

T out = ΣMm=1Vm[Wm(x,Θ), :] (7)

5.2 Bit functions

As stated, the bit functions will be a linear combination of the input, compared to a threshold.

At the beginning of the training process, the weights will be set randomly, but as the training

progresses, we want to choose only the relevant features for the decision (for each of the bit

functions in each fern). Hence we will apply a softmax function with a temperature parameter

to control the importance of each of the weights:

U = SoftMaxβ [B] uj =
exp(β · bj)

ΣDin
i=1 exp(β · bi)

(8)

Notice that uj ∈ (0, 1) ∀i and ΣDin
j=1uj = 1. This way, the weights act as a probability vector

over the input. B are the learnable parameters of the model and represents the contribution of

each cell in T in.

6 Experimenting With Synthetic Data

In order to successfully debug the HTE algorithm, we conducted a number of experiments with

synthetic data - data which was generated and divided to classes with built-in properties. All

experiments are simple to compute and their successful results are foretold. Experiment will

be consider successful if the algorithm will achive wanted results. If not, it will indicate that

Page 15 of 28

Hierarchical Table Ensemble (HTE) Final Report

the issue is somewhere in the script and it must be resolved. For all experiments data size is

100000, classes ratio is 0.5 and train test split factor is 0.8.

6.1 Experiments

A In the first experiment we will consider 2-Dim Gaussian random variables from 2 classes.

Xi ∼ N(µi, σi), where µ1 = (0, 0), µ2 = (S, 0), and σ1 = σ2 = I2. In our experiments

we consider a Separation factor S which will be the distance between the classes means

and will determine the separability of the two classes. In this experiment, separation is

possible using a single bit function and a single fern. ’A’ is an easy experiment because it

is considering 2-Dim variables from 2 classes and S distance considers only one dimension.

When S = 5 the distribution would be wider(see Figure 11) and we expect the algorithm

to reach high accuracy. When S = 2 the distribution would be denser(see Figure 12 and

we expect to have less accurate results. The optimal solution is the bit function Θ(x1− S
2)

because x2 do not contains information about the label.

B Now, instead of 2-Dim data, we experiment with X ∈ Rd. σi = Id for i = 1, 2 and

µ1 = (0, 0, ..., 0), µ2 = (K, 0, ..., 0). This experiments tests if the informative dimension

can be chosen among many d noisy ones. The solution is the bit function Θ(x1 − S
2).

C Like ’A’, but µ2 = [K,K] for class 2. This experiment has a medium level of difficulty but

a single bit function in a single fern should suffice. Here, the HTE should consider using

both dimensions to be able to correctly classify the examples(see Figures 13, 14). This

experiment is most significant from the rest because the linear separator considering more

than one dimension unlike experiment ’A’, and it is important for testing later complex

multi-dimensional ’real life’ data.

6.2 Initial Results

A HTE algorithm with one bit-function and one Fern reached expected results: Accuracy

is 99.36% when S = 5 which is greater than 84.42% when S = 2. The reason for the

accuracy difference is the density of the variables - the more denser it is, the harder is for

the vertical separator line Θ(x1 − S
2) to label the variables correctly. But still the results

are very good as expected due to ’alphas’ converges and not too high or low learning rate.

B HTE algorithm with one bit-function and one Fern reached expected and the high rate

of accuracy indicate that the informative dimension chosen between many d noisy ones.

Accuracy for S = 2 converge to 83.61% and for S = 5 converge to 99.33%. The reason for

the difference is the same as the above with just one difference which is the dimensions

size of the variables(all noise but one).

C HTE algorithm with one bit-function and one Fern reached expected results and distin-

guished the two classes, when S = 2 the best accuracy was 85.08% and when S = 1.5

the best accuracy was 91.88%. The accuracy didn’t converge due high learning rate(see

Figure 10) but still make high results meaning the linear separator set somewhere close

to x2 = S −X1 as expected.

Page 16 of 28

Hierarchical Table Ensemble (HTE) Final Report

Figure 10: Learning Rate for gradient descent: A hyperparameter that used to train the network. Too low, training
will make very tiny updates to the weights which cause slow learning progress. However, if set too high, undesirable

divergent behavior may occur in the loss function.

Figure 11: Experiment A 2-Dim distribution,
separation factor is 5

Figure 12: Experiment A 2-Dim distribution,
separation factor is 2

Figure 13: Experiment C 2-Dim distribution,
separation factor is 2

Figure 14: Experiment C 2-Dim distribution,
separation factor is 2

A1 B1 C1

A2 B2 C2

Figure 15: Accuracy by epoch number for all experiments.

Page 17 of 28

Hierarchical Table Ensemble (HTE) Final Report

7 Experimenting With Real Data

In effort to successfully test HTE accuracy performance we compare HTE results to the best

reported algorithm, which is the deep forest, and thus we are using the datasets they used(i.e.

’gcForest’, ’Random Forest’, ’MLP’).

The relative data sets are:

Data set Number Of Features Number Of Samples Classes URL
LETTER 16 20,000 26 Link
ADULT 14 32,561 2 Link
YEAST 8 1484 10 Link
WINE 13 178 3 Link
IMDB 1 50,000 2 Link

Table 1: Table to test captions and labels

In order to run HTE with these data sets, we preformed data preparation and analysis, as

shown below.

7.1 LETTER Data Set

The first tabular data set we examine is ’Letter Recognition’ which is a database of character

image features. The objective is to identify each of a large number of black-and-white rect-

angular pixel displays as one of the 26 capital letters in the English alphabet. The character

images were based on 20 different fonts and each letter within these 20 fonts was randomly dis-

torted to produce a file of 20,000 unique stimuli. Each stimulus was converted into 16 primitive

numerical attributes (statistical moments and edge counts) which were then scaled to fit into

a range of integer values from 0 through 15.

Attribute Information:

Attribute Information Attribute Information
letter capital letter (A to Z) x2bar mean x variance (integer)
x-box horizontal position of box (integer) y2bar mean y variance (integer)
y-box vertical position of box (integer) xybar mean x y correlation (integer)
width width of box (integer) x2ybar mean of x x y (integer)
height height of box (integer) xy2bar mean of x y y (integer)
onpix total # on pixels (integer) xedge mean edge count left to right (integer)
xbar mean x of on pixels in box (integer) xedgey correlation of x-edge with y (integer)
ybar mean y of on pixels in box (integer) yedge mean edge count bottom to top (integer)

yedgex correlation of y-edge with x (integer)

Table 2: LETTER data set attributes information

First five samples:

letter xbox ybox width height onpix xbar ybar x2bar y2bar xybar x2ybar xy2bar xedge xedgey yedge yedgex
0 T 2 8 3 5 1 8 13 0 6 6 10 8 0 8 0 8
1 I 5 12 3 7 2 10 5 5 4 13 3 9 2 8 4 10
2 D 4 11 6 8 6 10 6 2 6 10 3 7 3 7 3 9
3 N 7 11 6 6 3 5 9 4 6 4 4 10 6 10 2 8
4 G 2 1 3 1 1 8 6 6 6 6 5 9 1 7 5 10

Table 3: LETTER data set first five rows

All of the data is non-null numeric values, no more modification is require in order to start the

HTE algorithm.

Figure 16: Demonstration of class(letters) distribution

Page 18 of 28

https://archive.ics.uci.edu/ml/datasets/letter+recognition
https://www.kaggle.com/wenruliu/adult-income-dataset
http://archive.ics.uci.edu/ml/datasets/yeast
https://archive.ics.uci.edu/ml/datasets/wine
https://www.kaggle.com/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews

Hierarchical Table Ensemble (HTE) Final Report

Figure 17: Illustrate the Black-and-white rectangular pixel displays some of the 26 capital letters in the English
alphabet

Figure 18: Heat map showing relationship between each letter and each attribute

Its noticeable that ’M’ and ’W’ have the highest ’xedge’ feature values. It make sense since ’M’

and ’W’ are relatively ”wide” at the ’x’ axis (pixel-to-pixel) compare to other letters. It can be

assumed that ’xedge’ feature will effect the letters ’M’ and ’W’ classification at some degree.

Figure 19: Bar plot showing relationship between each letter and ’xedge’ feature

Different approach to see ’xedge’ is by the bar plot above. ’xedge’ feature values for ’M’ and

’W’ letters are far from the rest.

Page 19 of 28

Hierarchical Table Ensemble (HTE) Final Report

HTE Tests LETTER with ResFern & Batch Norm:

Layers Epochs Bit Functions Ferns Optimizer Res-Fern Batch Norm Accuracy
1 50 7 50 ADAM YES YES 96.10%
3 80 7 50 ADAM YES YES 92.975%
4 80 7 50 ADAM YES YES 93.825%

Table 4: HTE results LETTER with ResFern & Batch Norm

7.2 ADULT Data Set

Prediction task is to determine whether a person earns more or less than 50K a year based on

census data. Also known as ”Census Income” data set. Extraction was done by Barry Becker

from the 1994 Census database. A set of reasonably clean records was extracted using certain

conditions.

Attribute Information:

Attribute Information Attribute Information
age person age(continuous) occupation labor options(categorical)

workclass person’s work class (categorical) relationship relationship status (categorical)
fnlwgt final weight (continuous) race person’s race (categorical)

education type of education acquired(categorical) sex gender (categorical)
education-num number of education years (continuous) capital-gain (continuous)
marital-status (categorical) capital-loss (continuous)
hours-per-week (categorical) native-country (categorical)

Table 5: ADULT data set attributes information

First five samples:

age workclass fnlwgt education education.num marital.status occupation relationship race sex capital.gain capital.loss hours.per.week native.country income
90 ? 77053 HS-grad 9 Widowed ? Not-in-family white female 0 4356 40 United-States <=50K
82 Private 132870 HS-grad 9 Widowed Exec-managerial Not-in-family white female 0 4356 18 United-States <=50K
66 ? 186061 Some-college 10 Widowed ? Unmarried black female 0 4356 40 United-States <=50K
54 Private 140359 7th-8th 4 Divorced Machine-op-inspct Unmarried white female 0 3900 40 United-States <=50K
41 Private 264663 Some-college 10 Separated Prof-specialty Own-child white female 0 3900 40 United-States <=50K

Table 6: ADULT data set first five rows

In order to make HTE operational on ADULT data set we had to make some adjustments:

1. Replacing ”?” cells with NANs and fitting it accordingly, i.g. ”?” in work class was

switched to ”Never-Worked”. Other missing values are imputed with the most frequent

value in column or mean if column is numeric.

2. Dropping attributes that does not contribute to the analysis, i.g. 91.671% of all samples

are zeros at capital.gain , and 95.335% of all samples are zeros at capital.loss.

3. Handling categorical values with different approaches:

(a) One-Hot Encoding - Using “dummy variables” which are binary attribute(1/0)

for each option in each categorical attribute.

(b) Label Encoding - converting the labels into numeric form so as to convert it into

the machine-readable form.

Prepared Label Encoding ADULT Data Set Insights:

12 modified numeric attributes for 32,554 samples.

The above histogram shows that age:

• Age attribute is not symmetric.

• it is right-skewed probably because employment rate is higher among younger adults.

• Minimum and Maximum age of the people is 17 and 90 respectively.

Page 20 of 28

Hierarchical Table Ensemble (HTE) Final Report

Figure 20: Age distribution

• This data set has fewer observations (540) of people’s age after certain age i.e. 70 years.

This can imply that the algorithm should take in consideration that age feature in older samples

are less reliable because they represent about 1.5% of total samples.

Figure 21: Age-Income relationship box plot

The above bivariate box plot shows :

• The mean ”age” for Income group(<=50K) is 36.8 years. And for Income group(>50K)

is 44.2 years

• Outliers present in both the income group(<=50k and >50k) wrt ”age” attribute.

• Income group(<=50k) has lower median age(34 year) than the Income group(>50k) which

has median ”age”(42 year).

• Interquartile range(IQR):

– For Income group(<=50k) , IQR is between [25,46] (long range). Middle 50% of the

Age is spread over longer range for the income group who earn ¡=50k.

– For Income group(>50k) , IQR is between [38,50] (shorter range).

• This data set has fewer observations (540) of people’s age after certain age i.e. 70 years.

Hypothesis test the relationship between Income & Age Two sampled T-test :The

Independent Samples t Test or 2-sample t-test compares the means of two independent groups

Page 21 of 28

Hierarchical Table Ensemble (HTE) Final Report

in order to determine whether there is statistical evidence that the associated population means

are significantly different. The Independent Samples t Test is a parametric test. This test is

also known as: Independent t Test.

• Null Hypothesis : there is no difference in Mean age of income group >50k and income

group <=50k.

• Alternate Hypothesis :-there is difference in Mean age of income group >50k and income

group <=50k.

Results:

ttest = 5.597908016307065

pvalue = 7.635785041686396e− 08

We reject H0

We can conclude that there is a significant difference in the mean ages of income group >50K

and income group <=50K. It means that age has some contribution to the distinguish income

groups.

Figure 22: Education-Income relationship

This plot shows:

• The relationship between education attribute and person’s income.

• Despite the fact that most of the categories fall under the HS-grad but the interesting

thing is only 5.12% of all people belong to the income group 1(i.e. earns more than 50k),

surprisingly less than the categories fall under the Bachelors which is 6.78%.

• There only few categories in ”education” attribute whose percentage to fall under income

group 1 is greater than the falling under income group 0.

• These are prof-school, masters and doctorate.

• We can also infer that higher education may provide better earnings.

Hypothesis test the relationship between Income & Education

• Null Hypothesis: There is no relationship between education and income.

• Alternate Hypothesis: There is a relationship between education and income.

Page 22 of 28

Hierarchical Table Ensemble (HTE) Final Report

Results:

probability=0.950, critical=18.307, stat=14.104

Independent (fail to reject H0)

Chi-Squared test concludes:

• As we have accepted the H0, that there is no relationship between these two categorical

variable.

• We can conclude that is no dependency of education attribute on the target variable

income.

Figure 23: Race-Income relationship plot

This plot shows that:

• The relationship of ”white” race with ”income” can easily guess based on previous sum-

mary statistics.

• There is huge difference between the percentage of fall either groups for each ”race” except

for the ”other”(.63%) and ”amer-indian-eskimo”(.74%) but this could be due the lesser

number of observations for those categories.

Hypothesis test the relationship between Income & Race

• Null Hypothesis: There is no relationship between race and income.

• Alternate Hypothesis: There is a relationship between race and income.

Results:

probability=0.950, critical=5.991, stat=1.157

Independent (fail to reject H0)

Chi-Squared test concludes:

• As we have accept the H0, that there is no relationship between these two categorical

variable.

• We can conclude that is no dependency of ”race” attribute on the target variable income.

HTE Tests ADULT - LABEL ENCODING:

Page 23 of 28

Hierarchical Table Ensemble (HTE) Final Report

Layers Epochs Bit Functions Ferns Optimizer Res-Fern Batch Norm Accuracy
1 50 7 50 ADAM NO NO 83.179%
2 50 7 50 ADAM NO NO 83.963%

Table 7: HTE Result ADULT Regular

Layers Epochs Bit Functions Ferns Optimizer Res-Fern Batch Norm Accuracy
1 50 7 50 ADAM YES NO 83.671%
2 50 7 50 ADAM YES NO 84.270%

Table 8: HTE Result ADULT ResFern

Layers Epochs Bit Functions Ferns Optimizer Res-Fern Batch Norm Accuracy
1 50 7 50 ADAM YES YES 83.655%
3 50 7 50 ADAM YES YES 84.208%

Table 9: HTE Result ADULT ResFern and Batch Norm

7.3 WINE Data Set

The objective of this data set to cluster different types of wines. This data set contains the

results of a chemical analysis of wines grown in a specific area of Italy. Attributes are: Al-

cohol, Malic acid, Ash, Alcalinity of ash, Total phenols, Flavanoids, Nonflavanoid phenols,

Proanthocyanins, Color intensity, Hue, OD280/OD315 of diluted wines and Proline.

Figure 24: WINE attributes histograms to explore and visualize the data.

The plot at fig.25 suggest that there is a strong linear correlation between ”Total Phenols” at-

tribute and ”Flavanoids” attribute. We can model the relationship between these two variables

by fitting a linear equation, see visual at fig.26 and HTE results below table.12.

Layers Epochs Bit Functions Ferns Optimizer Res-Fern Batch Norm Accuracy
1 80 8 15 ADAM NO NO 67.084%
2 80 8 15 ADAM NO NO 64.263

Table 10: HTE Result WINE

7.4 YEAST Data Set

The classification objective is to predict localization site of protein(non-numeric).

Although we did not preformed data analysis, we did managed to test the algorithm on this

data set.

Page 24 of 28

Hierarchical Table Ensemble (HTE) Final Report

Figure 25: WINE correlation matrix to visualize relationship between the different attributes.

Figure 26: WINE Relationship between Phenols and Flavanoids: We can conclude that is some dependency between
the two attributes.

Attribute Information
Sequence Name Accession number for the SWISS-PROT database

mcg McGeoch’s method for signal sequence recognition
gvh von Heijne’s method for signal sequence recognition
alm Score of the ALOM membrane spanning region prediction program
mit Score of discriminant analysis of the amino acid
erl Presence of ”HDEL” substring(Binary)
pox Peroxisomal targeting signal in the C-terminus
vac Amino acid content score of vacuolar and extracellular proteins
nuc Score of signals of nuclear and non-nuclear proteins

Table 11: ADULT data set attributes information

Page 25 of 28

Hierarchical Table Ensemble (HTE) Final Report

Layers Epochs Bit Functions Ferns Optimizer Res-Fern Batch Norm Accuracy
1 80 6 20 ADAM NO NO 57.894%
2 80 6 20 ADAM NO NO 60.526%

Table 12: HTE Result YEAST data set

8 Final Results

The next table summarize HTE accuracy performances we compared HTE’s best results on the

data sets above and compared it with other known Deep Learning algorithms 13:

LETTER ADULT YEAST
gcForest 97.40% 86.40% 63.45%

Random Forest 96.50% 85.49% 61.66%
HTE 96.10% 84.27% 60.52%
MLP 95.70% 85.25% 55.60%

Table 13: Algorithms Results On Data sets

We can conclude that the accuracy rate of the HTE is approximately the same comparing to

other known Deep Learning algorithms. We believe more can be done (see Future Work) in

order to maximize HTE accuracy results and perhaps be a better alternative for known Deep

Learning algorithms.

9 Summary and Conclusions

HTE algorithm made to offer alternative approach for Deep Learning on tabular data in matter

of processing time and less computing capabilities. We tested synthetic data to show algorithm

capability to distinct classes for the classification task, and compared results on known data

sets to other known algorithms. Current results shows that HTE is close in accuracy to Forests

algorithms and almost better in all tests from MLP. Optimizing the algorithm accuracy prefer-

ences is yet to come, but even without it we honestly believe HTE has the potential to enable

CPU-based lean devices to achieve Deep capabilities with minimum computing power.

10 Future Work

In the near future we attend to optimize the HTE performances in accuracy and even in matter

of processing time.

• Maximizing current data sets results by optimizing the algorithm components, i.g. in the

annealing mechanism and all sorts of tools and techniques for the benefit of optimizing the

algorithm accuracy rate. Until now, ’ResFern’ has been used which is a modification of the

known ’ResNet’ to the HTE and the methods applied in it. In addition, a normalization

batch technique was also implemented, which resulted in a significant improvement in

the accuracy rate, so we recommend examining additional methods from the Machine

Learning field to improve the learning process in the algorithm in an effort to maximize

the accuracy rate. As part of this optimization process we will examine the effect of

different hyper parameters values (i.e. number of layers, batch size, learning rate, etc.)

while adjusting new optimization tools.

• Implementing the algorithm for CPU-based devices to demonstrate its low computational

cost. As we recall, the HTE is aimed to be a low computing deep learning algorithm so it

is essential to examine its performances on a CPU-based lean device. For that to happen

Page 26 of 28

Hierarchical Table Ensemble (HTE) Final Report

the code should be adjusted to this kind of device. While adjusting the code, we will

test the accuracy and run-time performances in order to reach maximum accuracy and

minimizing resource usage.

• Developing HTE architecture to solve problems with time series data. Time series data

can be phrased as supervised learning. Time-Series contains temporal dependencies that

cause two otherwise identical points of time to belong to different classes. This gener-

ally increases the difficulty of analysing this kind of data. Existing techniques usually

depended on adjusted features that were expensive to create. Once the relative dataset is

prepared by converting a time series to a supervised learning problem, we must be careful

in how it is used to fit and evaluate a model. HTE next mission is to be able to deal with

this kind of problem (time series data) and be able to evaluate a model.

Page 27 of 28

Hierarchical Table Ensemble (HTE) Final Report

References

[1] Aharon Bar-Hillel, Eyal Krupka, and Noam Bloom. Convolutional tables ensemble: classi-

fication in microseconds. arXiv preprint arXiv:1602.04489, 2016.

[2] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and orga-

nization in the brain. Psychological review, 65(6):386, 1958.

[3] Yizhi Liu, Yao Wang, Ruofei Yu, Mu Li, Vin Sharma, and Yida Wang. Optimiz-

ing {CNN} model inference on cpus. In 2019 {USENIX} Annual Technical Conference

({USENIX}{ATC} 19), pages 1025–1040, 2019.

[4] Zhi-Hua Zhou and Ji Feng. Deep forest. National Science Review, 6(1):74–86, 2019.

[5] Chris Drummond and Robert C Holte. Exploiting the cost (in) sensitivity of decision tree

splitting criteria. In ICML, volume 1, 2000.

Page 28 of 28

	Acknowledgement
	List of Tables
	List of Figures
	Abstract
	Introduction
	Related Work
	Deep Learning and Convolutional Neural Networks
	Convolutional Tables Ensemble (CTE) and Deep CTE
	Deep Random Forest

	Hierarchical Table Ensemble
	From the CT transformation to working with vectors
	Bit functions

	Experimenting With Synthetic Data
	Experiments
	Initial Results

	Experimenting With Real Data
	LETTER Data Set
	ADULT Data Set
	WINE Data Set
	YEAST Data Set

	Final Results
	Summary and Conclusions
	Future Work
	References

